

630

-+'6 a C o---/7 (1' C'c (e) \/to-t Lvz CV '-1 0--/ '-'"1 J.o <;,_ 'J.cC 4._

However, there is a same obstacle (2) as for the solution_with !run-_time_checking._. We do not
deny that such restrictions may be use or other purposes.

5. Derivation from abstract classes

Let us define an abstract class as a class that has no instances. Any non-abstract class is a
concrete class. (Meyer, 1996) suggested a rule that soon became popular (Martin and Ottinger,
1997; Grosberg, 1997) inside 00 community: a concrete class must be derived from an
abstract class and never from a concrete one. If we follow this rule, we must split every non­
leaf class into two parts: a concrete and an abstract one. An abstract part should be derived
from the abstract part of a superclass. A concrete part should be derived from the abstract part.
All subclasses should be derived from the abstract part. Function-members that are harmful for
subclasses should be placed in an abstract part, and those that are dangerous in a concrete part.
In our example, it is:

class AbstractEllipse
{ public:

I;

float a, b;

float Area(){ return 3.14*a*b; I
void Double() { a*=2; b*=2; return;

class ConcreteEllipse : public AbstractEllipse

{ void SetXYAxes(float xO, float yO){ a=xO; b=yO;
I;

class ConcreteCircle: public AbstractEllipse {I;

return; I

Really, c.SetXYAxes(l,2) is now an illegal code. Again, there are three obstacles: (1) the rule is
not radical enough. The leaf classes must be split into two parts as well, simple because we
must expect that there will be a need for even smaller subclasses. (2) The rule is too radical: it
is in direct contradiction with one of the basic ideas of 00: encapsulation of data and
functions. An abstract class is the opposite of that goal. (3) It is complicated_ in practi� It may
be expected that it will not be accepted in practical programming. On the other side, this
method reveals and makes available just what we need: different rules of inheritance for
different function-members.

6. Inverse inheritance

Our idea is to change the rules of inheritance to obtain this feature: if the function-member of
class S called with legal states of the arguments cannot a�;r0lle8�tate to the caller-­
objec_t of �lass S, it cannotassigg an illeggl_.ya.ille 19 the �bject of �lass S' in �hichfunction is
tmplicitly and auto.matically inherit�. On the other side, it should be allowed for a programmer

·to inhere any function he wants explicitly. If we take a look at various function-members, we
will see that (1) selectors like Area could always be inherited in the subclass. (2) Some
modifiers, like Double, may b-e Tnherlted into subclass, but it wiB depend on the definition of
111e modifi�is ���-e�ected tn� (J) �very assignor a': Pr··�S' X Q may be inherited inversely,

Tram a subclass to a su erclass. Obvio-usly a: P2 � S x Q is well defined. For example, a
fun��tRadius(float r can b�:fu!.e_Q_in-C.ircle �cl_inhed!e�(to Ellipse. Also-;-(4)­
in some cases, a modifiers can be inherited from a subclass to superclass. Again, it depends on

i li e definition ofthe-modifier. An -example is the same function-member Double. We propose
the next three rules for inheritance: (R1) selectors should be inherited from a superclass to a

20th Int. Cont. Information Technology Interfaces IT/ '98, June 16-19, 1998, Pula, Croatia

631

s�-�cl�ss autom�tica}!Y_;__@1) assignors sh<?_�_I�-�� i'!heri_t�d from a �t1�c,lass to a superclass
-automatically; (R3) other function-members, i.e. real modifiers can be inherited from any class
that-contains the- same-cfatamembers:·�-a�y positio� i�'""the cl�ss hierarchy: but such an
-inheritance must b-e exp Icitl -decfared.-For examp1e, the cocfe in proposeo pseudo C++ may-
·-rook as

·- ·-·-· --------

class Ellipse
float a,b;

} ;

void SetXYAxes(float xO, float yO);
float Area();
void Double(){ a*=2; b*=2; return;
Circle: :Triple () ;

class Circle: public Ellipse
{ void SetRadius(float r){ a=b=r;

void Triple(){ a*=3; b*=3; }
Ellipse: :Double();

After this declaration assignor SetRadius, selector Area, and modifiers Double and
Triple should be available in both classes Ellipse and Circle. Advantages over traditional

�·- ---

inheritance ILJ.J�s imru�tne.n!�_d �G.Gmd_ingJ_Q..L..SP . . are.: 01 it i,� __ QgssjJ:>le t9 describe. ev�ry sub�et '
asaitiliclass, including all subty pes. (2) Subcla�� reLi!i9f.!..!§._not fragile any more. The addition
of any function-member to any class-isno-danger: if the function is an assignor or selector its
definition has a sense in every class where such function is automatically inherited. If the
function is a mutator, then it is not inherited in any class, except explicitly. (3) Rule (R2) and
especially (R3) are powerful and wider re-use of code is pqssible. In comparisol). _with the
methoa-of'cferivation -from atLahs.ttaci-.class, the,.m.ethod describ�d hefe'h�s the following
�- ·----·------... ... ,, .• , __ ,.,.. ,- ..

advantages: (1) it is simpler for practical programming (2) it should be built in into the
language, i.e. itshOt!;ld n�t pe_pO§Sible to ignore .Jhe s_e_c.;I.!Li1_y_m�.Chanism: and (3) �arne lik� _

advantage ov�[_LSP. We will name the whole system described here inverse inheritance.
'

,....--

7. Emulation of inverse inheritance with multiple inheritance

In the language that supports multiple inheritance it is possible to implement inverse
inheritance with using abstract classes. For simplicity, let us suppose that we want to declare
classes C1, ... , Cn where C;+1 is the subclass defined by constraint on C;, for i=l, ... , n-1. All
such classes contain the same data members, and these data members should be encapsulated
in the abstract class Ad. For every i=l, ... ,n we should declare two abstract classes As; and Aa;.
These classes should contain declarations of the selectors and assignors that we want to be
defined inC;. Classes As1 and Aan must be derived from Ad Class As;+t must be derived from
As;, i=l, . .. , n. Contrary, Aa; must be derived from Aa;+1. Every modifier mi must be
encapsulated in its own abstract class, for example AmJ, derived from Ad. Every concrete class
C; should be derived from abstract classes As;, Aa; and Ami for every modifier mi we want be
available for class C;. For example, this code is compiled and checked with Borland C++
compiler.

class AData { public: float a, b; l;
class AGetEllipse: virtual public AData
{ public: float GetArea() { return a*b*3.14;

class .AGe t C i r·c le: public AGetE 11 ipse
{ public: float GetRadius() { return a; } ;

} ;

201h Int. Cont. lnfonnation Technology Interfaces /T/'98, June 16-19, 1998, Pula, Croatia

