
-

627

lt'f/
ELLIPSE-CIRCLE DILEMMA AND INVERSE INHERITANCE

1.-t �·� � vc.Lr f
Vt I rv...,,�)

Kazimir Majorinc

Faculty ofNatural Sciences and Mathematics, University of Zagreb
Marulicev trg 19/III., 10 000 Zagreb, Croatia

kmajor@public. srce. hr

Abstract: We consider problfms related to inheritance in object-oriented languages, on the

example called ellipse-circle dilemma. We criticise the existing solutions and propose a new
kind of inheritance, called here inverse inheritance.

Keywords: inverse inheritance, Liskov substitution principle, ellipse-circle dilemma

1. Introduction

The generalisation, also known as is-A relation, is usually considered as one of the three basic
properties of the so called object-oriented (00) systems (languages, design, etc.) An 00
system su ports generalisation if it provides language constructs for the definition of t e

- -

subclass of the existing class. Each object, instance of a subclass is automatically an instance of
�suQer�Jass (Rumbaugh et al., 1991). Each subclass of the given class automatically contains

all data- and function- members declared in a superclass. Such a mechanism is called
inheritance. One may think that if we use class C for a description of a set of the entities, that
the subset of that set may be correctly described as a subclass of class C without further
considerations. A well known counterexample is the ellipse-circle (EC-) dilemma (Cline and
Lomow, 1995). Suppose that we need to define the class of central ellipses and the class of
central circles, and a few simple operations on them. The central ellipse is completely
determined by a pair of halfaxes a, b and a circle is a special case of the ellipse such that
r=a=b. The problem is how to declare this two classes: should one of them be derived from
the other or should they be independent? According to the nature of the generalisation, the
circle is-An ellipse, perhaps the most natural code that implements these two classes will be
something like this C++ code:

class Ellipse
.{ public:

float. a, b;

} ;

float Area() I return 3.14*a*b; I
void SetXYAxes(float xO, float yO)I a=xO; b=yO; return; I
void Double() I a*=2; b*=2; return;

class Circle: public Ellipse I I;

However, it is an unexpected fact that code

Circle c;

c . etXYAxes< 1, 2);

is legal. It is obvious that SetXYAxes will assign illegal state to the object of class Circle. �
say that the state of the object is illegal if it_Q_Qe.s_not de.sc.rib_.e

_
_ an_y pQ�sible states of the

intended model. One of the goals of 00 programming - greater data safety - is strongly
corrupted if such statements are legal. As we will see, this problem is harder to solve than it
looks (Shang, 1996; Martin and Ottinger, 1997).

201h Int. Cont. Information Technology Interfaces IT/ '98, June 16-19, 1998, Pula, Croatia

I

j

I

2. Solutions with run-time checking

628

The first idea may be that it is enough to redefine function SetXYAxes in class Circle. For
example,

\(class Circle: public _ Ellipse
\ void SetXYAxes (Tloat xb, float yO) { exit (1); return; }

} ;

The disadvantags:s_gf such a disabling of the inherited function are (1) c.SetXYAxes(1,2) is still
a legal code, and it will be successfully compil�d although it will produce a �niime error if­
executed. Such a level of safety IS -less tha� that typical to the procedural statically typed
languages. (2) If we want to disable all_fu�tions that may assign an illegal state to the object,
we must knowallfuncilons that--are inherited from superclasses, maybe hundreds of tfiein;

�aftfiougfi we may need only a rew. It may require a lot of work and-Cha�ii1lfie rufure
maintenance. The procedure must be repeated every time when the base class is exchanged
with, for example, a new and refined version from some library, etc.

Two 00 languages, Eifl'el and Sather support design by contract, a very powerful feature that
allows us to declare an expression which objects of the given class must satisfy in all stable
times. This expression will be checked during the run-time and will produce a run-time error
when the objects come into an illegal state. An example is in Eiffel. \\ class CIRCLE

I

inherit ELLIPSE
invariant

equalaxes: a=b
\ end

All actions that assign an illegal state to the object of class CIRCLE will produce a run-time
error, including those made by any function inherited from superclasses. However, there are
two obstacles to this method: (1) statement c.SetXYAxes(1,2 is still I gal and will be compiled
and (2) a characteristic function of a � le al st�t-eLmayj�_UPQ._£omplicated, �oL�own or
even undecidable, although the implementation of the subclass may be natural and useful even -
If we do not know how to recognise all elements. Actually, it is possible to define contracts
only in special cases.

2. The cause of the problem

Let us make a distinction between states and legal states of a class. We will say that S' is a --------
subclass of a S if S' is __ derived by language rules from S. Let us Sl!QJ20S�_J!:l�t �tfiere-are-no

·-- additional �mernbers in S'; it is enough for _ _g�uurpos�. Every state of S' is aut�atically a
---staieof S. Let us consider the case in which a class desc-;:ib�s th� intended ,;ode!: aset. of some­

rea -world or mathematical entities. We will sa that a state is legal if it describes a possible
entity in the intended model. Class S' is a subset of S if the set of all legal states of S.,is a suosef ·­

()fthe set of all legal statesof S. Encapsulation, assertions and deSig; by co;;tracthave-the roTe-
to prevent an accidental assign of an illegal state to the object. Let us distinguish a few kinds of
function-members. A selector is a function-member that returns value of a data-member of the

�--- - - ··-· --- ' .-c -
object that called It or some function of those values, and· oes not change the state oFthe
object, i.e value of it�data�e�b��x�pT�-;[the seleCtor is a function-membe-;- Are�. A

-
·--- --- _,__ ,._,,.. ,..,.._, -...-.....-, -M -

201h Int. Conf. Information Technology Interfaces IT/ '98, June 16-19, 1998, Pula, Croatia

629

modifier on the class is every function-Il)emq�r that chapges the_ state of the caller object. An
eXalnpfe is a function:member -S�-tXYAxes. It is possible to di;ti�g�i�h t�o kinds--of 'modifiers:

some modifiers change the state of the object without using the previous state of the object.
Such functions may be considered as a generalisation of the assignment operator and we will

� 1 call them assignors. The function SetXYAxes is an assignor. The second kind of modifiers are
l) mutato!!_OI_!eal_IJ!q_q.J.fl�rs, i.e. those that use the previous state of the object to calculate a

newState. The function Double is a mutator. Now, let S' be both a subclass and a subset of S.
This type of subclassing is called specialisation via constraints. In further text, for simplicity,
we will use the same labels for classes-;�(f se��f legal value·s�tet selector s, assignor g_ anc!_

�o_r ll:Lb_e defined Oll.flass S_._Their declarati9nSJlfe_s:_$_x F_r -� QI,J£. E..'l._�_s._ _�_ Q2? and m:
S x P3 � S x Q3� With PI, P2, P3, QI, Q2, Q3 we will denote the classes whose values are used
in calculating functions s, a, m. If these functi�ns �re inhe_ritedJrom . .S.Ja_S_'_.then they __ �hould

_satisfy the_de.clar�tiof!s (D) s: S'� PI � QI, ___ q_�_f2_--! S' x Q.�0!:!ld m: S' x P3 � S' x Q3.j:j is
_ _!(l§Y to see that if S' is ar_�_&_suQ_��t _9f S, !he_!! __ s will sa_tisfy the de_�J.a.ration on S', s(S' x PI) �

QI but it is not necessary that modifiers will, i.e. that a(P2) c S' x Q2, m(S' x P3) � S' x Q3_ In a
-gelleral case, this will not be true (as for SetXYAxes) but in some special cases, like for oUble,

it will be true_ Nevertheless, a and m are defined in S' and they can assign an illegal state to the
object. The rule that all kinds of fimction-members shoulctb_e. inherited in the same way is too

�le_- ---
--

3. Liskov substitution principle

A widely accepted principle for the solution of the EC-dilemma and similar problems is a
Liskov sl!!!_stituftQfJ_ P!JlJ:cipl£�_ (LSP) _that J;:L<ti.m_s_t_hat S' sho_l.!Ld _b� __ d_e_�L'!f�_g_JlS a s_ubcl�ss of S
only if S' � a �ubjyJ2CQ[S. According to the usually accepted definition (Liskov, 1988), class S'
is a subtype of class S if for each object oi of class S there is an object 02 of class S' such that
for all programs P defined in terms of S the behaviour of P is unchanged when oi is substituted
for o2. In our terms, S' is a subtype of S if all modifiers satisfy conditions (D) from the �vious
chapter. In our example, Circle Sho-urdfU;t)e .. ct�riy�d---:frp_m Eilip�e ... I�deed, that rule excl�des
1Fie possibility that some inherrt.ed functions may assign an illegal state to the object. However,
there are a few obstacles to LSP. (1 Uhe s�le_ctor_js '-Y�ll de�ne�- on e_yery_J;J:lbs_�! _of a class,
like _function Area. _LSP does not support the re-use of such functions if a s_ubset is not a ------ ""- ' --·----

subtype. _(2) The subtype relation is neith�,Lfreq.ue..tlLnoLLDaturaL..I.clation .between th�---
CliiSSeS�-and It IS doubtful wlUrtthebenefits of implementation are of the whole mechanism of .
inheritance only for this relation. (3) 00 langgages _g_c;>__llPJ __ support a ___ subtyp_e relation_, its
implementation depends on the discipline of the programmers. (4) The subt e relation is very

.fragile, __i.e. __ ev_ery .addition .9f_J��-fu!!ctiQ11:!Pem}J�_L19 .. th�_ .. sUP.§!fl��s-may de;!�c;yrt-:--F�_ -­

example, addition of a very_T)aturaLassignor.)3-?storeObjectFromFik(cha,r_ *]ilenaine) to any
Slij;erc_��i::_§l rbre':�� every sub1YJ?.� .. !'.�la.tigp with -�ny �i the derived sub��-sses: Note that
subset relation is not so fragile: it does not depend on the functions detinea in a superclass, but
only on the set of legal values. Once established, addition of a function can not change it.

..

4. Restriction of arguments
v� oA � (/ 1 ps;z ' : � Y �� (1=-> 'vt;f-f{c�c/ -s)
v CT 'r), � \t c\o .· : sJ YY�� (�=,)/ ct t-v.-elFCee h)

Some languages, like Eiffel, Sather or Transframe implement various methods of a restriction
of the type of the arguments in inherited function-members. Idea is tha�L� S x Q2, gnd m:
S x P3 � S x 03 can_ be inherited in S' if P; and P3 are restricted to small enough classes P2' _______________ __..... ---· -·-- ---

��3�J.t.js_!ru�, for P/ � a·I(S' x Q2) and forP/-� { p��1!3r$' x--
{ p-} E_m-'(S' x Q3)}_·--

201h Int. Conf. Information Technology Interfaces IT/ '98, June 16-19, 1998, Pula, Croatia

630

-+'6 a C o---/7 (1' C'c (e) \/to-t Lvz CV '-1 0--/ '-'"1 J.o <;,_ 'J.cC 4._

However, there is a same obstacle (2) as for the solution_with !run-_time_checking._. We do not
deny that such restrictions may be use or other purposes.

5. Derivation from abstract classes

Let us define an abstract class as a class that has no instances. Any non-abstract class is a
concrete class. (Meyer, 1996) suggested a rule that soon became popular (Martin and Ottinger,
1997; Grosberg, 1997) inside 00 community: a concrete class must be derived from an
abstract class and never from a concrete one. If we follow this rule, we must split every non­
leaf class into two parts: a concrete and an abstract one. An abstract part should be derived
from the abstract part of a superclass. A concrete part should be derived from the abstract part.
All subclasses should be derived from the abstract part. Function-members that are harmful for
subclasses should be placed in an abstract part, and those that are dangerous in a concrete part.
In our example, it is:

class AbstractEllipse
{ public:

I;

float a, b;

float Area(){ return 3.14*a*b; I
void Double() { a*=2; b*=2; return;

class ConcreteEllipse : public AbstractEllipse

{ void SetXYAxes(float xO, float yO){ a=xO; b=yO;
I;

class ConcreteCircle: public AbstractEllipse {I;

return; I

Really, c.SetXYAxes(l,2) is now an illegal code. Again, there are three obstacles: (1) the rule is
not radical enough. The leaf classes must be split into two parts as well, simple because we
must expect that there will be a need for even smaller subclasses. (2) The rule is too radical: it
is in direct contradiction with one of the basic ideas of 00: encapsulation of data and
functions. An abstract class is the opposite of that goal. (3) It is complicated_ in practi� It may
be expected that it will not be accepted in practical programming. On the other side, this
method reveals and makes available just what we need: different rules of inheritance for
different function-members.

6. Inverse inheritance

Our idea is to change the rules of inheritance to obtain this feature: if the function-member of
class S called with legal states of the arguments cannot a�;r0lle8�tate to the caller-­
objec_t of �lass S, it cannotassigg an illeggl_.ya.ille 19 the �bject of �lass S' in �hichfunction is
tmplicitly and auto.matically inherit�. On the other side, it should be allowed for a programmer

·to inhere any function he wants explicitly. If we take a look at various function-members, we
will see that (1) selectors like Area could always be inherited in the subclass. (2) Some
modifiers, like Double, may b-e Tnherlted into subclass, but it wiB depend on the definition of
111e modifi�is ���-e�ected tn� (J) �very assignor a': Pr··�S' X Q may be inherited inversely,

Tram a subclass to a su erclass. Obvio-usly a: P2 � S x Q is well defined. For example, a
fun��tRadius(float r can b�:fu!.e_Q_in-C.ircle �cl_inhed!e�(to Ellipse. Also-;-(4)­
in some cases, a modifiers can be inherited from a subclass to superclass. Again, it depends on

i li e definition ofthe-modifier. An -example is the same function-member Double. We propose
the next three rules for inheritance: (R1) selectors should be inherited from a superclass to a

20th Int. Cont. Information Technology Interfaces IT/ '98, June 16-19, 1998, Pula, Croatia

631

s�-�cl�ss autom�tica}!Y_;__@1) assignors sh<?_�_I�-�� i'!heri_t�d from a �t1�c,lass to a superclass
-automatically; (R3) other function-members, i.e. real modifiers can be inherited from any class
that-contains the- same-cfatamembers:·�-a�y positio� i�'""the cl�ss hierarchy: but such an
-inheritance must b-e exp Icitl -decfared.-For examp1e, the cocfe in proposeo pseudo C++ may-
·-rook as

·- ·-·-· --------

class Ellipse
float a,b;

} ;

void SetXYAxes(float xO, float yO);
float Area();
void Double(){ a*=2; b*=2; return;
Circle: :Triple () ;

class Circle: public Ellipse
{ void SetRadius(float r){ a=b=r;

void Triple(){ a*=3; b*=3; }
Ellipse: :Double();

After this declaration assignor SetRadius, selector Area, and modifiers Double and
Triple should be available in both classes Ellipse and Circle. Advantages over traditional

�·- ---

inheritance ILJ.J�s imru�tne.n!�_d �G.Gmd_ingJ_Q..L..SP . . are.: 01 it i,� __ QgssjJ:>le t9 describe. ev�ry sub�et '
asaitiliclass, including all subty pes. (2) Subcla�� reLi!i9f.!..!§._not fragile any more. The addition
of any function-member to any class-isno-danger: if the function is an assignor or selector its
definition has a sense in every class where such function is automatically inherited. If the
function is a mutator, then it is not inherited in any class, except explicitly. (3) Rule (R2) and
especially (R3) are powerful and wider re-use of code is pqssible. In comparisol). _with the
methoa-of'cferivation -from atLahs.ttaci-.class, the,.m.ethod describ�d hefe'h�s the following
�- ·----·------... ... ,, .• , __ ,.,.. ,- ..

advantages: (1) it is simpler for practical programming (2) it should be built in into the
language, i.e. itshOt!;ld n�t pe_pO§Sible to ignore .Jhe s_e_c.;I.!Li1_y_m�.Chanism: and (3) �arne lik� _

advantage ov�[_LSP. We will name the whole system described here inverse inheritance.
'

,....--

7. Emulation of inverse inheritance with multiple inheritance

In the language that supports multiple inheritance it is possible to implement inverse
inheritance with using abstract classes. For simplicity, let us suppose that we want to declare
classes C1, ... , Cn where C;+1 is the subclass defined by constraint on C;, for i=l, ... , n-1. All
such classes contain the same data members, and these data members should be encapsulated
in the abstract class Ad. For every i=l, ... ,n we should declare two abstract classes As; and Aa;.
These classes should contain declarations of the selectors and assignors that we want to be
defined inC;. Classes As1 and Aan must be derived from Ad Class As;+t must be derived from
As;, i=l, . .. , n. Contrary, Aa; must be derived from Aa;+1. Every modifier mi must be
encapsulated in its own abstract class, for example AmJ, derived from Ad. Every concrete class
C; should be derived from abstract classes As;, Aa; and Ami for every modifier mi we want be
available for class C;. For example, this code is compiled and checked with Borland C++
compiler.

class AData { public: float a, b; l;
class AGetEllipse: virtual public AData
{ public: float GetArea() { return a*b*3.14;

class .AGe t C i r·c le: public AGetE 11 ipse
{ public: float GetRadius() { return a; } ;

} ;

201h Int. Cont. lnfonnation Technology Interfaces /T/'98, June 16-19, 1998, Pula, Croatia

632

class ASetCircle: virtual public AData

{ public: void SetRadius(float r){ a=b=r; return; I;
class ASetEllipse: public ASetCircle

{ public: void SetXYAxes(float aO, float bO)

{ a=aO; b=bO; return; I;

} ;

class Ellipse: public ASetEllipse, public AGetEllipse {I;
class Circle: public ASetCircle, public AGetCircle {I;

After that, GetArea is available in Ellipse and Circle, GetRadius only in Circle, SetRadius in
Ellipse and Circle and SetXY Axes only in Ellipse. Every function and data member is declared
and defined exactly once.

8. Conclusion

EC-dilemma shows some unexpected side effects of the conception of inheritance, one of the
main ideas of the 00 paradigm. At least, there is no consensus in the 00 community how to

implement is-A relation. Until the solution to this problem is found, in our opinion, there is no

possibility to write a quality non-trivial software using inheritance. On our opinion, the rules of

inheritance are far too simple. They may be significantly improved with the proposal- made

here. However, the whole concept of the inheritance, like two other basic 00 concepts:

encapsulation and polymorphism, is still questionable.

9. Acknowledgements

Thanks to Marshall Cline, Patrick Doyle (author of the term assignor), Joachim Durcholtz,

Sanja Kusec, Nick Leaton, Michael Lee Finney, Robert Martin, Scott McKay, James Rogers

(author of the term inverse inheritance), Juergen Schlegenmilch, and Tim Ottinger, in
alphabetical order.

10. References

1. Cline, M. and Lomow, G. (1995), C++ FAQs: Frequently Asked Questions, Addison­
Wesley, Reading.

2. Grosberg, l (1997), "Design guideliness for Is-A hierarchies", Dr Dobbs l, 266, pp.
36-42.

3. Liskov, B. (1988), "Data abstraction and hierarchy", SIGPLAN Notices 23.
4. Martin, R. (1996), "The Liskov substitution principle", C++ Report, Vol 9(2).
5. Martin, R. (1997), "The principles of OOD", http://www.oma.com.
6. Martin, R. and Ottinger, T. (1997), "Inheritance 'Is-A' problem", Object Magazine

Online, May 1997, http://www.objectmagazine.com.

7. Mattos, N. and DeMichiel. L. (1994), "Recent design trade-offs in SQL3", ACM

SIGMOD Record, Vol 23, No 4.
8. Meyers, S. (1996), More Effective C++, Addison-Wesley, Reading.
9. Rumbaugh, l, Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W (1991), Object­

Oriented Modeling and Design, Prentice-Hall, New Yersey.
10. Shang, D. (1996), "Is a cow an animal?", Object Currents, Vol. 1, SIGS Publications,

http//www.objectmagazine.com.
11. Zdonik, S B. and Maier, D. (1989), Readings in Object-Oriented Databases, Morgan

Kaufmann

20th Int. Conf. Information Technology Interfaces IT/ '98, June 16-19, 1998, Pula, Croatia

