
THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

3

GOOD LOOKING CIRCLES.
KAZIMIR MAJORINC.

w
e attempt to draw a simple illustration for a thermodynamics textbook. The molecules in
fluid are represented with circles of equal size. The circles can touch, but not intersect
each other. They should be densely positioned, i.e. it should be impossible to draw an

additional circle without intersecting others. The whole picture should look natural. That condition is
vague but unavoidable: the picture should not look like it is drawn by human, or by any other,
unrelated algorithm. Also, the program does not need to be fast; only one good picture need to be
drawn for the textbook.

The problem is solved in four attempts; all four are described in this article. A few elements are
common to all attempts. The record circle and procedure draw_circle are defined; they only make the
program slightly shorter and simpler. The distance between two circles, d, is defined as in geometry;
actually, even bit more generally: it is assumed that the distance between intersecting circles is
negative.

link rrandom
link ggraphics
global SIZE, R
record circle(x, y, r)

procedure d(C1, C2)
 rreturn ssqrt((C1.x-C2.x)^2+(C1.y-C2.y)^2)-C1.r-C2.r
 eend

procedure draw_circle(C)
 DDrawCircle(C.x, C.y, C.r)
 rreturn C
 eend

procedure eliminate_intersecting(Candidates, c)
 eevery iinsert(ToDelete:=sset(), d(c, c0:=!Candidates)<0 & c0)
 rreturn Candidates --:=ToDelete
 eend

procedure mmain(args)
 SIZE:=150
 R:=10
 eevery (SIZE|R) := gget(args)
 rrandomize()
 attempt1()
 attempt2()
 attempt3()
 attempt4()
 wwrite("Done")
 WWDone()
 eend

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

4

As the running time is not important, all algorithms are left in the simplest, unoptimized form.
After a circle is drawn, in the next step, we form the set Candidates that contains all circles that
satisfy criteria for a next step. Most importantly, they do not intersect any already drawn circles. One
of the candidates is randomly chosen and drawn. This process repeats until Candidates is empty. In
three of four attempts, the Candidates set initially contains all circles that could be drawn in
quadrant of the given size.

The First Attempt.

In the first attempt no additional criteria are imposed. The procedure that draws a random set of
the non-intersecting circles is short and simple.

procedure attempt1()
 &wwindow:=WWOpen("height="||SIZE, "width="||SIZE, "label=1.", "fg=red")
 eevery iinsert(Candidates:=sset(), circle(-2*R to SIZE+2*R, -2*R to SIZE+2*R, R))
 wwhile Candidates:=eliminate_intersecting(Candidates, draw_circle(?Candidates))
 eend

Some circles are drawn outside of the visible part of the picture, to avoid possible edge effects on
the picture.

This picture is not satisfactory: the circles are not dense enough and the parts left uncovered by
circles are too big. As all circles are chosen randomly, the program can, theoretically, draw denser
picture; however, it is not likely to happen in a reasonable number of executions.

The Second Attempt.

It was suggested that the program could choose circles that form a perfect quadratic or hexagonal
pattern, and then slightly translate individual circles in the random direction. Ideally, both higher
density and randomness can be achieved.

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

5

procedure attempt2()
 distance_between_centers:=(2*R+3)
 tolerance:=3
 &wwindow:=WWOpen("height="||SIZE, "width="||SIZE, "label=2.", "fg= dark green")
 every iinsert (Candidates:=sset(),
 i:=-2*R to SIZE+2*R &
 j:=-2*R to SIZE+2*R &
 (i+100) % distance_between_centers <= tolerance &
 (j+100) % distance_between_centers <= tolerance &
 circle(i, j, R)
)
 wwhile Candidates:=eliminate_intersecting(Candidates, draw_circle(?Candidates))
 eend

The algorithm is similar to the previous one. Additionally, an initial choice of the candidates is
narrowed to the circles with coordinates of the centres in the segments [k(2R+3), k(2R+3)+3],
k=0, 1, 2 ... We added the constant 100 to avoid aperiodicity of the operation % around zero.

However, the result of the second attempt is even less satisfactory.

Although the circles are dense, their distribution is too regular. The square pattern is clearly
visible, especially if seen from a distance. Variations of the values tolerance and
distance_between_centers do not help: the pattern can become less obvious only if the density is
significantly decreased.

The Third Attempt.

In the third attempt we applied a similar idea, but more locally. If circles are chosen so they touch
at least two already drawn circles, then the result is a perfect hexagonal pattern. We expected that,
using a slightly looser requirement: circles are drawn so they are close to two other circles, density
can be preserved, while irregularities will accumulate to the degree that hexagonal pattern will not be
clearly visible in picture.

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

6

procedure attempt3()
 min_allowed_d:=0
 max_allowed_d:=5
 &wwindow:=WWOpen("height="||SIZE, "width="||SIZE, "label=3.", "fg=blue")
 eevery iinsert(Candidates:=sset(), circle(-2*R to SIZE+2*R, -2*R to SIZE+2*R, R))
 Drawn:=[]
 rrepeat
 { Candidates2:=[]
 eevery c:=!Candidates do
 { close_circles:=0
 eevery (min_allowed_d <= d(!Drawn, c) <= max_allowed_d)
 ddo close_circles+:=1
 iif (close_circles > 1) | (close_circles = *Drawn <= 1)
 then pput(Candidates2, c)
 }
 iif nnot(c:=?Candidates2) tthen ffail
 Candidates:=eliminate_intersecting(Candidates, draw_circle(c))
 pput(Drawn, c)
 }
 eend

Our expectations are fulfilled and resulting picture looks significantly better; it is both dense and
irregular.

Some circles form hexagonal pattern, but it looks more like the natural tendency of the densely
packed circles than the result of some inadequate algorithm.

However, as can be seen from the picture, some relatively large empty areas occurred again on
pictures drawn with attempt3. Although it is not obvious from the above static picture, observation of
the program during work clearly reveals the origin of such empty spaces.

The set of the all drawn circles can form figures with large concavities that are bigger than one
circle. Some of these concavities can not be filled with densely packed circles.

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

7

See, for example, the picture below: the green circles form a concave figure, and after red circle
(one in the center if you see this article in monochrome) is drawn, the large area around it can not be
filled any more.

The Fourth Attempt.

The problem with the previous attempt can be solved easily. We define the center of the first
drawn circle as the Center of the whole picture. Beside the previously mentioned criteria, drawn
circles are chosen to be relatively close (variable tolerance) to the Center. If tolerance is 0, the circle
closest to the center that does not intersect with other circles is drawn. This ensures that figures
formed by the circles have no large concavities.

procedure attempt4()
 min_allowed_d:=0
 max_allowed_d:=5
 tolerance:=5
 &wwindow:=WWOpen("height="||SIZE, "width="||SIZE, "label=4.", "fg=black")
 eevery iinsert(Candidates:=sset(), circle(-2*R to SIZE+2*R, -2*R to SIZE+2*R, R))
 Drawn:=[]
 rrepeat
 { iif /Center
 tthen c:=(Center:=?Candidates)
 eelse { Candidates2:=[]
 min_d:=1E5
 eevery c:=!Candidates ddo
 { close_circles := 0
 eevery (min_allowed_d <= d(!Drawn, c) <= max_allowed_d)
 ddo close_circles+:=1
 iif (close_circles > 1) | (close_circles = *Drawn <= 1)
 tthen { pput(Candidates2, c)
 min_d >:= d(Center, c)
 }
 }
 eevery pput(Candidates3:=[], (d(Center, c:=!Candidates2)<=min_d+tolerance) & c)
 iif nnot(c:=?Candidates3) tthen ffail
 }
 pput(Drawn, c)
 Candidates:=eliminate_intersecting(Candidates, draw_circle(c))
 }
 eend

THE GENERATOR
VOL 1. NO 1.
MARCH MMIV.

8

Finally, the result satisfied all our criteria; at least sufficiently well for the textbook illustration.

T

