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UNIFICATION IN PROPOSITIONAL CALCULUS. 
KAZIMIR MAJORINC 

ropositional calculus is perhaps the simplest and the best known example of a formal 
theoryTP

1
PT. The formulas of propositional calculus are either (1) propositional variables (for 

example A, B, C, ...) or (2) constructed from other formulas using unary (~) or binary 
connectives (|, &, >, ...). If infix notation for binary connectives is used, these formulas are similar to 
the usual algebraic formulas: for example (~A), (A>B), (A>(~(A>B))) are formulas, while 
A~B>B is not.  

p 

Somehow, surprisingly, a standard set of axioms for propositional calculus has not been 
established; one can hardly find two books that use identical sets of axioms.  

There is more agreement about rules of inference. Two of the most frequently used rules are (1) 
substitution: if F is a theorem, XB1B, ..., XBnB are some of the variables occurring in F and GB1B, ..., GBnB are 
formulas without occurrences of XB1B, ..., XBnB then the formula F' obtained from F by simultaneous 
substitution of all occurrences of XB1B, ..., XBnB with GB1B, ..., GBnB respectively is also the theorem and (2) 
modus ponens: if formulas (F>G) and F are theorems, then G is also theorem. Additional rules of 
inference are not necessary. Axioms are, by definition, also theorems of propositional calculus.  

A logician usually defines propositional calculus syntactically, because syntax is finite and even - 
visible, and as such it raises less doubts than any semanticsTP

2
PT. However, the usual intention is to 

finally add semantics to the defined syntax. Typically, variables are interpreted as statements of the 
natural language (including mathematical extensions) and connectives ~, |, & and > as logical 
operators “not”, “or”, “and” and “implies” respectively. With proper choices of axioms and inference 
rules, propositional calculus is complete, i.e. all tautologies (i.e. statements that are true no matter 
which natural language statements are represented by variables) and only tautologies are theorems of 
propositional calculus. 

Although the tautology concept might seem trivial and useless, it is not. For example, if we know 
that (FB1B>FB2B) is a tautology, we also know that FB2B is true whenever FB1B is true; certainly, such a 
conclusion is not trivial for every possible interpretation of FB1B and FB2B in natural language. 

Definition of the propositional calculus is constructive; in principle, one can make a program that 
derives all theorems of propositional calculus. However, after half a century of research, computers 
have only established a marginal role in the development of the mathematical knowledge. 
Furthermore, difficulties in designing programs that match human capabilities in games such as 
chess, or especially go are not encouraging as it is probable that mathematics is more complicated 
than these games.  

                                                     

TP

1
PT Any introductory text in mathematical logic will contain an extensive survey of important results, for example any 

edition of EE. Mendelson, INTRODUCTION TO MATHEMATICAL LOGIC.  

TP

2
PT For example, some logicians do not accept that double negation implies affirmation. They, however, find formula as 

((~(~A))>A) acceptable if it is defined as string of characters, without meaning. 
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Theorems, as found in books are both true and interesting mathematical statements. In attempts 
to automate their derivationTP

1
PT, two general approaches are used. In the first approach, one starts 

from an interesting statement and tries to determine whether it is true. In the second approach, one 
starts from statements known to be true and tries to find interesting consequences. These two 
approaches are called automated theorem proving and automated theorem findingTP

2
PT (far less 

researched with exception of the works of SS. N. VassilyevTP

3
PT.) 

In practice, the problem with automated theorem finding is always the same: naive algorithms for 
deriving tautologies generate many obviously trivial, weak or other less than interesting theorems. If 
interesting theorems are derived at all, it is not known how they could be identified and isolated from 
myriads of others also generated in the process.  

For example, substitution can be applied to any formula and infinitely many formulas can be 
derived from it. Unfortunately, all these derived formulas are longer and weaker than the premise. 
These are weaker in the usual mathematical sense that can be easily recognized but is hard to 
formalize.  

Modus ponens is different: the consequence is shorter and stronger than the longer one of the two 
premises. Unfortunately, modus ponens can rarely be applied; almost certainly it cannot be applied 
on two randomly chosen theorems of propositional calculus.  

This difference suggests that integration of these two rules in some combined rule can both reduce 
combinatorial explosion caused by substitution and increase the frequency of successful application of 
modus ponens in the process of the development of propositional formulas. One possible combined 
rule is (3) for two theorems F and (G>H), if there are substitutions s and t such that s(F)=t(G) then 
t(H) is also a theorem. 

The combined rule is not trivial any more. The essential part of the problem is determining 
whether for given formulas F and G there exist substitutions s and t such that s(F)=t(G). That 
problem also occurs in other contexts and the commonly used name for it is unificationTP

4
PT of formulas. 

An algorithm for unification of two propositional formulas is easily implemented in a Unicon 
program of about hundred and fifty lines.  

 

link sstrings 
link ssets 
 
$ddefine NL "\n" 
$ddefine LINE rrepl("=", 20) 
$ddefine TRUE 1 
$ddefine FALSE 0 

                                                     

TP

1
PT Good survey article is MM. Beeson, THE MECHANIZATION OF MATHEMATICS in CC. Teuscher, (ed.) Alan Turing: Life and 

Legacy of a Great Thinker, Springer-Verlag, Berlin, 22003.  

TP

2
PT LL. Wos, THE PROBLEM OF AUTOMATED THEOREM FINDING. Journal of Automated Reasoning, Vol. 10(1), 11993, pp. 

137-8. 

TP

3
PT Probably the best review of his work is SS. N. Vassilyev, MACHINE SYNTHESIS OF MATHEMATICAL THEOREMS, Journal 

of Logic Programming, Vol 9, 11990, pp. 235-66.  

TP

4
PT Extensive review can be found in FF. Baader, WW. Snyder, UNIFICATION THEORY, Chapter 8, pp. 439-526 in AA. 

Robinson, AA. Voronkov (ed.), Handbook of Automated Deduction, Elsevier/MIT Press, 22001.  
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$ddefine xxxxxx1 ( 
$ddefine init_to :=:temp_init_to):=(iif \temp_init_to tthen temp_init_to eelse 
$ddefine xxxxxx2 ) 
 
procedure mmain() 
  eevery k:=1 tto 4 ddo  
  { F:= [  ["(A>((B>(C>B))>D))", "((a>(b>c))>((a>b)>(a>c)))"],  
      ["(A>(~A))", "((~B)>B)"],  
      ["(A>(~B))", "(B>(~A))"],  
      ["(A>(~B))", "(B>(~A))"]  
     ][k] 
   Fca:=[[TRUE, TRUE], [TRUE, TRUE], [TRUE, FALSE], [TRUE, TRUE]][k]
   wwrite(LINE, NL, "Unification of: ") 
   eevery i:=idx(F) ddo wwrite(F[i], ", changes allowed: ", Fca[i]) 
   write("Unification succeeded: ", unified( F, Fca ).formula) 
  } 
 end 

 

The program links to standard libraries "TstringsT" and "Tsets.T" A few simple macros are 
defined. Only the infix macro operator init_to deserves some comment. The expression (( x init_to 
expr )) is equivalent to longer expressions like {/x:=expr; x} or {iif /x tthen x:=expr eelse x} that allow 
initialization of variables in the same place they are used in loops. The macro init_to is usually slower 
than initialization outside of the loop. In some expressions, like eevery ((x init_to 0))+:=1 tto n, one 
can replace ((x init_to 0)) with simple (x:=0). Also, one execution of the macro in some procedure 
must be completed before another execution is started. Hence, nested expressions like ((x init_to ((y 
init_to 0)))) do not work correctly.TP

1
PT However, we believe that replacement of the frequently occurring 

idioms or patterns in the programs with simple, non-redundant syntactical constructs reveals the 
logic of the programming itself, so the price appears to be acceptable.TP

2
PT  

The seemingly strange macros xxxxxx1 and xxxxxx2 have only one role: to balance the parenthesis 
left open by init_to and prevent errors in text editors with integrated parentheses matching; the 
definition of the macro init_to uses parentheses in an unusual way; for an excellent example see NN. 
Hodgons's SciTETP

3
PT. 

 
 
 
 
 
 
 
 
 

                                                     

TP

1
PT It seems to be one of the most frequent problems with macros..  

TP

2
PT CC. Evans implemented a more powerful macro system and special syntax (x :$ expr) for {/x:=expr; x} in his private 

build of Unicon. 

TP

3
PT <http://www.scintilla.org/SciTE.html>. 
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For testing and demonstration purposes, four pairs of formulas are stored in the list F and passed 
as an argument to the procedure unified. That procedure returns a record consisting of (1) the 
formula resulting from unification and (2) a list of all performed substitutions. 

The procedure unified accepts another argument, Fca, a list of Boolean values. For clarity of 
intention the macros FALSE and TRUE are used respectively. In this implementation of unified, 
only formulas F[i] such that Fca[i]=TRUE can be changed. If unification succeeds and Fca[i] was 
FALSE, then F[i] can be obtained from F[3-i] by substitution. Less formally, F[i] is a special and 
weaker case of F[3-i]. 

Some procedures used in the program can be useful in a more general context. They are copied 
from other programs or generalized and extracted elements of the early working versions of this 
program. 

 

procedure is_true(B) 
 iif B==TRUE tthen rreturn TRUE 
 end 
  
procedure card(predicate, X) 
 eevery ((result init_to 0))+:=( predicate(!X) & 1 )  
 rreturn result 
 end 
  
procedure card_nulls(X) 
 eevery ((result init_to 0)) +:= ((/!X) & 1 ) 
 rreturn result 
 end 
 
procedure card_columns(LL)  
 eevery ((result init_to *?LL)) <:= *!LL 
 rreturn result 
 end 
  
procedure idx(L)  
 ssuspend 1 tto *L 
 end 
  
 



THE GENERATOR 
VOL 1. NO 1. 
MARCH MMIV. 

17 

 

procedure jdx(LL)  
 ssuspend 1 tto card_columns(LL) 
 end 
 
procedure column(LL, j)  
 iif /j then ssuspend column(LL, jdx(LL))  
    eelse  {  eevery L:=!LL ddo 
          pput( ((C init_to [])) , if j <= *L tthen L[j] eelse &nnull) 
          rreturn C 
        } 
 end 
 
 
procedure projection(XX, index) 
 iif ttype(XX)=="list"  
  tthen {  result:=[]; 
         eevery X:=!XX ddo pput(result, X[index]) 
         rreturn result 
       } 
 end  
 
procedure is_simple_type(x) 
 iif ttype(x)==("real"|"integer"|"string") tthen rreturn x 
 end 
 
procedure generalized_application(p, L) 
 eevery pput(result:=[], p(!L)) 
 rreturn result 
 end 
  
procedure equal_by_value(X) 
 iif nnot different_by_value(X) tthen rreturn X 
 end 
  
 
procedure different_by_value(L) 
 S:=sset(L) 
 iif mmember(S, "&equal") & mmember(S, "&different")  
   tthen eerror("Ambivalent different/equal_by_value.") 
 iif mmember(S, "&equal") tthen ffail  
 iif mmember(S, "&different") tthen rreturn L 
  ccase card_nulls(L) oof { 1: rreturn L; 2: ffail } 
  rreturn ccase card(is_simple_type, L) oof  
  {  1: L 
    2: iif L[1] ~== L[2] tthen L eelse &ffail 
    0: iif different_by_value(column(L)) tthen L eelse &ffail 
  } 
 end 
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The predicates is_true and is_false allow convenient combination of Boolean and success/ failure 
program control flow.  

The generator jdx(LL) accepts a list of lists as an argument; if understood as two-dimensional 
array, jdx generates indexes of its columns. The procedure column(LL, j) returns j-th column of such 
an array, i.e. list [LL[1][j], ..., LL[*LL][j]]; if the second argument is omitted, it generates all 
columns of LL. Expressions symmetrical to jdx(LL), column(LL, j) and column(LL) are 1 tto *L, 
LL[j] and !LL respectively. Syntactical symmetry can be achieved by implementation of procedures 
idx(LL)TP

1
PT and row(LL, j).  

The procedure projection(X, index) is a generalization of the procedure column(LL, j); it accepts a 
list of tables as an argument and index can be any key in the table. Further generalization can be 
useful. 

The procedure generalized_application(p, L) returns the list [p(L[1]), ..., p(L[*L])]. It is similar 
to RR. Griswold's apply in the Icon Program Library, file "apply.icn". Further generalization can 
be useful.  

A few procedures with names containing the prefix cardTP

2
PT count elements of the structures 

satisfying given criteria. 

Unicon's built in operator === and its negation ~=== compare equality of the two structures 
“by reference.” Although there are few similarities with set-theoretical equality, === does not satisfy 
the axiom of extensionalityTP

3
PT. For example, {1, 2}={1, 2} is true in set theory, while its Unicon 

equivalent sset([1, 2]) === sset([1, 2]) does not necessarily succeedTP

4
PT. 

Design and implementation of a relation more similar to set theory equality has been addressed in 
the pastTP

5
PT. 

The procedures different_by_value and equal_by_value presented here are more limited than JJ. P. 
de RRuiter's procedure. However, they have one useful additional property. Pseudo- keywords 
"T&equalT" and "T&differentT", are defined as equal_by_value and different_by_value to any value. 
Comparison between "T&equalT" and "T&differentT" is not defined and will result, in a runtime 
error if attempted.  

 
procedure is_variable(F) 
 iif ffind(F, &lletters) tthen rreturn F 
 end  
 
record character_index_level_type(character, index, level) 
 
procedure character_index_level(F) 
 ssuspend character_index_level_type( 

                                                     

TP

1
PT The function kkey is equivalent to idx.  

TP

2
PT The name of the procedure is inspired by the set-theoretical concept of the cardinal number. 

TP

3
PT Sets are uniquely defined by their members, i.e. (∀x)(∀y)(((∀z)( z∈x ↔ z∈y)) ↔ (x=y)) 

TP

4
PT Actually, sset([1, 2]) === sset([1, 2]) never succeeds in Unicon. 

TP

5
PT RR. Griswold's procedure equiv (equiv.icn, I.P.L.) and JJ. P. de RRuiter's procedure same_value (mset.icn, 

I.P.L.) should be mentioned. 
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   cF:=!F,  
   ((i init_to 0)) +:= 1,  
   ((lev init_to 0)) +:= ccase cF of { "(": 1; ")": -1; ddefault: 0} 
   ) 
 end 
 
procedure main_connective(F)  
 rreturn equal_by_value([ character_index_level(F), ["~"|">", "&equal", 1]])[1] 
 end 
 
 
procedure analysed_formula(F) 
 T:=ttable() 
 iif is_variable(F)  
  tthen T ["variable"]:=F  
  eelse { m:=main_connective(F)  
     T ["connective"]:=m.character  
     T ["left"]:=F[2:m.index]  
     T ["right"]:=F[m.index + 1: -1] 
    } 
 rreturn T 
end 

 

The predicate is_variable allows all lowercase and uppercase letters as propositional variables. 

The procedure character_index_level(F) generates records containing successive individual 
characters of the formula F, the position index of the character in the formula and the number of 
opened and unclosed parentheses before that position. Note that ssuspend, aside from its primary role, 
resumes all generators like eevery. 

Perhaps the most elegant procedure in the whole program, main_connective(F) returns a 
connective ("T~T" or "T>T") enclosed in exactly one pair of parenthesis in the formula F and its position in 
that formula. 

The procedure analysed_formula accepts a formula as an argument and returns a table containing 
the main connective and both the left and right subformulas of a given formula. If the main 
connective is unary, i.e. "T~T", the left subformula is by the definition empty string. 

Finally, we approach the most specific parts of the program. 

 
record substitution(variable, formula)  
 
procedure forced_substitution(F, Fca) 
 iif is_variable(!F)  
  tthen iif i:=idx(F) & is_variable(F[i]) & is_true(Fca[i])  
    tthen rreturn substitution(F[i], F[3-i] )  
    eelse  { wwrite( "No substitution: formulas differ in variable "|| 
             "but substitution is not allowed.") 
         fail 
        } 
 
 AF:=generalized_application(analysed_formula, F) 
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 "~==" !( D:=projection(AF, j:=!["connective", "left", "right"]))  
 iif j=="connective"  
  tthen wwrite("No substitution: different main connectives.") 
  eelse rreturn forced_substitution(D, Fca)  
 end 
  
procedure substitute(F, Fca, s) 
 eevery is_true(Fca[i:=idx(F)])  
   ddo F[i]:=rreplace(F[i], s.variable, s.formula) 
 iif ffind(s.variable, !F)  
  tthen wwrite("Substitution failed: ", s.variable, " cannot be eliminated.")
  eelse rreturn s 
 end 
  
record unified_type(formula, substitution) 
 
procedure unified(F, Fca) 
 wwhile different_by_value( F ) ddo  
  iif nnot( s:=forced_substitution(F, Fca) &  
     wwrite( LINE, NL, "Substitution ", s.formula,  
          " for ", s.variable, " suggested."  
         ) & 
     substitute(F, Fca, s) & 
     wwrite("Substitution succeeded.", NL, F[1], NL, F[2]) & 
     pput( ((applied_substitutions init_to [])), s) 
    )  
  tthen ffail 
 rreturn unified_type(?F, applied_substitutions) 
 eend 

 

The procedure unified contains a loop that is repeated as long as formulas F[1] and F[2] are 
different. In the loop two elementary operations are performed, (1) searching for substitutions that 
need to be performed and (2) performing the substitutions. If any of these two fail, unification also 
fails. Those two operations are delegated to the procedures forced_substitution and substitute. 

The prefix “forced” in forced_substitution suggests that a found substitution has to be applied; 
otherwise, it would be impossible to unify two formulas. The forced_substitution first searches for the 
difference between two formulas, translating them into the form of a tree 'on the fly' and then tries to 
match these trees. There are a few different cases, dependent on the difference between formulas 
F[1] and F[2]. 

In the simplest case exactly one of the formulas is a propositional variable; let us denote it with 
F[i]. If changing F[i] is allowed then substitution of F[3-i] for F[i] is necessary for unification. If 
changes to the formula F[i] are not allowed, then F[1] and F[2] cannot be unified.  

If both formulas are variables, then either of the substitutions F[1] for F[2] or F[2] for F[1] can 
be chosen. 

If neither one of the formulas in F is variable and they differ in the main connective then no 
substitution can unify them. 
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Finally, if both formulas in F are complex, (i.e. not variables) and have the same main connectives 
and differ in at least one of the corresponding subformulas then further searching is performed 
recursively. 

Once found, substitution can be performed easily. The procedure rreplace from "strings.icn" 
in the Icon Program Library can be used for formulas in the form of the string.  

Under some circumstances substitution fails, i.e. when a substituted variable still occurs in some 
part of the formula F. This can happen if (1) the formula to be substituted for a variable contains the 
same variableTP

1
PT; for example, if (~B) is substituted for B; or (2) when a substituted variable occurs in 

a formula where changes are not allowed. If substitution fails, again, unification of the formulas is 
impossible. 

After the formulas are unified it does not matter which one is returned as result of the unification; 
so a random choice is returned. Output produced by the program is relatively readable. 

 

==================== 
Unification of:  
(A>((B>(C>B))>D)), changes allowed: 1 
((a>(b>c))>((a>b)>(a>c))), changes allowed: 1 
==================== 
Substitution (a>(b>c)) for A suggested. 
Substitution succeeded. 
((a>(b>c))>((B>(C>B))>D)) 
((a>(b>c))>((a>b)>(a>c))) 
==================== 
Substitution a for B suggested. 
Substitution succeeded. 
((a>(b>c))>((a>(C>a))>D)) 
((a>(b>c))>((a>b)>(a>c))) 
==================== 
Substitution (C>a) for b suggested. 
Substitution succeeded. 
((a>((C>a)>c))>((a>(C>a))>D)) 
((a>((C>a)>c))>((a>(C>a))>(a>c))) 
==================== 
Substitution (a>c) for D suggested. 
Substitution succeeded. 
((a>((C>a)>c))>((a>(C>a))>(a>c))) 
((a>((C>a)>c))>((a>(C>a))>(a>c))) 
Unification succeeded: ((a>((C>a)>c))>((a>(C>a))>(a>c))) 
==================== 
Unification of:  
(A>(~A)), changes allowed: 1 
((~B)>B), changes allowed: 1 
==================== 

                                                     

TP

1
PT The occur-check test is frequently discussed in the context of Prolog. Most implementations do not perform 

occur-check. 
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Substitution (~B) for A suggested. 
Substitution succeeded. 
((~B)>(~(~B))) 
((~B)>B) 
==================== 
Substitution (~(~B)) for B suggested. 
Substitution failed: B cannot be eliminated. 
==================== 
Unification of:  
(A>(~B)), changes allowed: 1 
(B>(~A)), changes allowed: 0 
==================== 
Substitution B for A suggested. 
Substitution failed: A cannot be eliminated. 
==================== 
Unification of:  
(A>(~B)), changes allowed: 1 
(B>(~A)), changes allowed: 1 
==================== 
Substitution B for A suggested. 
Substitution succeeded. 
(B>(~B)) 
(B>(~B)) 
Unification succeeded: (B>(~B))  

 

For some pairs of formulas, for example (B>(C>(D>((a>a)>((b>b)>((c>c)>d)))))) and 
((A>A)>((B>B)>((C>C)>(b>(c>(d>D)))))), unification requires exponential running time. 

 
==================== 
(B>(C>(D>((a>a)>((b>b)>((c>c)>d)))))), changes allowed: 
1 
((A>A)>((B>B)>((C>C)>(b>(c>(d>D)))))), changes 
allowed: 1 
==================== 
Substitution (A>A) for B suggested. 
Substitution succeeded. 
((A>A)>(C>(D>((a>a)>((b>b)>((c>c)>d)))))) 
((A>A)>(((A>A)>(A>A))>((C>C)>(b>(c>(d>D)))))) 
==================== 
Substitution ((A>A)>(A>A)) for C suggested. 
Substitution succeeded. 
((A>A)>(((A>A)>(A>A))>(D>((a>a)>((b>b)>((c>c)>d)))
))) 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>(b>(c>(d>D)))))) 
==================== 
Substitution (((A>A)>(A>A))>((A>A)>(A>A))) for D 
suggested. 
Substitution succeeded. 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
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>A)))>((a>a)>((b>b)>((c>c)>d)))))) 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>(b>(c>(d>(((A>A)>(A>A))>((A>A)>(A>A))))))))) 
==================== 
Substitution (a>a) for b suggested. 
Substitution succeeded. 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((a>a)>(((a>a)>(a>a))>((c>c)>d)))))) 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((a>a)>(c>(d>(((A>A)>(A>A))>((A>A)>(A>A)))))
)))) 
==================== 
Substitution ((a>a)>(a>a)) for c suggested. 
Substitution succeeded. 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((a>a)>(((a>a)>(a>a))>((((a>a)>(a>a))>((a>a)>(
a>a)))>d)))))) 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((a>a)>(((a>a)>(a>a))>(d>(((A>A)>(A>A))>((A
>A)>(A>A))))))))) 
==================== 
Substitution (((a>a)>(a>a))>((a>a)>(a>a))) for d suggested. 
Substitution succeeded. 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((a>a)>(((a>a)>(a>a))>((((a>a)>(a>a))>((a>a)>(
a>a)))>(((a>a)>(a>a))>((a>a)>(a>a))))))))) 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((a>a)>(((a>a)>(a>a))>((((a>a)>(a>a))>((a>a)>(
a>a)))>(((A>A)>(A>A))>((A>A)>(A>A))))))))) 
==================== 
Substitution A for a suggested. 
Substitution succeeded. 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>
A)>(A>A)))>(((A>A)>(A>A))>((A>A)>(A>A))))))))) 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>
A)>(A>A)))>(((A>A)>(A>A))>((A>A)>(A>A))))))))) 
Unification succeeded: 
((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>A)>(A
>A)))>((A>A)>(((A>A)>(A>A))>((((A>A)>(A>A))>((A>
A)>(A>A)))>(((A>A)>(A>A))>((A>A)>(A>A))))))))) 

 

The resulting formula is exponentially longer than the input of the program. Hence, improvement 
of the algorithm is not possible without redefinition of the propositional calculus. This important 
negative result is, however, not completely surprising. Similar inefficiencies are observed in the 
related fields of propositional calculus, and relative improvements are achieved through introduction 
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of the equality in language or equivalent use of alternative data structuresTP

1
PT. That idea is, also, 

fruitfully applied on the unification problem.TP

2
PT 

                                                     

TP

1
PT The most important examples are described in GG. S. Tseitin, ON THE COMPLEXITY OF DERIVATION IN PROPOSITIONAL 

CALCULUS, in Studies in Constructive Mathematics and Mathematical Logic, Part 2. Consultant Bureau, New York 11968, 
pp. 115-25. and SS. A. Cook and RR. A. Rechkow, THE RELATIVE EFFICIENCY OF PROPOSITIONAL PROOF SYSTEMS. Journal of 
Symbolic Logic 44 (11979), pp. 36-50. We addressed similar problem in K Majorinc, EXTENSION RULE FOR NON-CLAUSAL 

PROPOSITIONAL CALCULUS, Fundamenta Informaticae, Vol 31, No 2, August 11997, pp. 107-16. 

TP

2
PT Few quadratic and linear time algorithms for unification in more general sense are reported. Perhaps the best known 

one is described by AA. Martelli and UU Montanari in AN EFFICIENT UNIFICATION ALGORITHM, ACM Transactions on 
Programming Languages and Systems 4(2), 11982, pp. 258-82.  

 


