
THE GENERATOR

VOL 2. NO 1.
FEBRUARY MMVI.

Memoization
Kazimir Majorinc

umans are known for their extensive use of different kinds of memories to improve the efficiency
of their computations. For example, few people ever compute the square root of the number 2;
even those that do, only do so once or twice. Instead, people remember its approximate value

and use it whenever needed. On the other hand, computers are typically used in a heavily repetitive,
redundant fashion: the same square root is computed daily by many computers, sometimes possibly with
significant cost of the processor time.

Donald Michie1 from Edinburgh was perhaps the first who described2 attempts for reduction of such
redundancies in the late sixties, using the metaphor of a memo, a short note written as a reminder. D.
Michie proposed that most recently used results of some computation are stored on the top of the stack.
When similar computation is needed again, program can search through stack for a previously computed
result before it attempts to actually compute it. Later, hash tables with their logarithmic access time
were recognized as the most useful data structure for memoization of large amounts of the data. The
main idea and implementation of memoization is simple enough that it is probably widely used ad hoc,
without reflection. However, support for memoization has been relatively recently introduced in
programming languages. For example, Marty Hall developed libraries for memoization in Common
Lisp3,4 and 5 in the early 1990's and together with Paul McNamee for C++6 in late 1990's. Mark Jason
Dominus7 from Philadelphia implemented a memoization module for Perl in the late 1990's and early
2000s. Recently, memoization seems to be discussed in contexts of many other programming languages,
including Java and Python. Particularly radical step is undertaken by Jeff Kingston from Sidney. In

1 http://www.aiai.ed.ac.uk/~dm/dm.html

2 Donald Michie, Memo functions and machine learning NATURE, vol. 218, April 6, 1968. pp. 19-22.

3 http://www-cgi.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/lisp/code/ext/memoize/announce.txt

4 Marty Hall, J. Paul McNamee, Improving the Performance of AI Software: Payoffs and Pitfalls in Using
Automatic Memoization, Proceedings of Sixth International Symposium on Artificial Intelligence, Monterrey,
Mexico, September 1993., also available on http://www.gia.ist.utl.pt/cadeiras/tp/aulas/Monterrey-
Memoization.pdf

5 James Mayfeld, Tim Finin, Marty Hall, Using Automatic Memoization as a Software Enginering Tool in
Real-World AI Systems, Proceedings of 11th Conference on Artificial Intelligence for Applications, February 20 -
22, 1995, Los Angeles, also available on http://www.cs.umbc.edu/~mayfield/pubs/caia95-memoization.ps

6 Marty Hall, J. Paul McNamee, Developing a Tool for Memoizing Functions in C++, ACM SIGPLAN Notices,
August 1998, pp. 17-22. Also available on http://apl.jhu.edu/~paulmac/publications/c++-toolbox-
memoization.ps .

7 Mark Jason Dominus maintains web site at http://perl.plover.com/ .His article Bricolage: Memoization, THE

PERL JOURNAL, Issue #13 Vol. 4 No. 1 (Spring 1999) is available also on his site at
http://perl.plover.com/Memoize/ . The article is reprinted in the book Jon Orwant (ed.), Computer Science and
Perl Programming, O'Reilley, 2003, available at http://www.oreilly.com/catalog/tpj1/chapter/ch20.pdf .

3

h

User Name
Typewritten Text

User Name
Typewritten Text

User Name
Typewritten Text

User Name
Typewritten Text

User Name
Typewritten Text

User Name
Typewritten Text

User Name
Typewritten Text
http://kazimirmajorinc.com

THE GENERATOR

VOL 2. NO 1.
FEBRUARY MMVI.

his programming language Nonpareil1 all functions are memoized by default. If memoization of some
function is not wanted, it has to be explicitly turned off.

The most frequently used example for memoization is the function that computes Fibonacci
numbers2. That function appears to be the most naturally implemented as a recursive procedure.

procedure r_fib(n)
 return if n<=2 then 1 else r_fib(n-1)+r_fib(n-2)
end

Unfortunately, simple test as every write(r_fib(1 to 40)) suffices to demonstrate that this
implementation is as inefficient as it is simple and elegant. Although recursive procedures are generally
slow, it is not the main reason for inefficiency of r_fib: another standard example for recursive
procedure, factorials, works much faster. Instead, the problem is in not so obvious redundant
computations. For some n, r_fib (n) calls r_fib (n-1) and r_fib (n-2), where r_fib (n-1) again calls r_fib
(n-2) and r_fib (n-3). Two calls of r_fib (n-2) are computed independently, hence, computation of r_fib
(n) requires roughly two to three times more time than computation of r_fib (n-2). Hence, time required
for a computation of r_fib exponentially depends on its argument. More exactly, but not of importance
on this place, it can be demonstrated by induction that running time of the procedure call r_fib (n)
linearly depends of the value of r_fib (n) itself.

Non-recursive implementation of same function can eliminate some redundancy.

procedure nr_fib(n)
 a:=b:=1
 every 3 to n do (a+:=b):=:b
 return b
end

However, even here, some increase of the complexity can be observed. Note that this implementation
requires time that linearly depends on n, i.e. it still consumes relatively a lot of processing time. Hence,
there are enough motives to investigate whether memoization can be an acceptable alternative.

It is frequently hard to predict whether computation of some function can benefit from memoization.
It depends on many factors, including, but not limited to the efficiency of the implementation of a
memoization, time required for the computation of the function without memoization, probability that
function is already called with same arguments, size and type of the memoized data and expected
running time of the whole program. For some functions, like addition, the computation can be faster
than search for a previous result or an excessive amount of memory might be needed for effective
memoization. On the other hand, for very slow functions, there is no upper limit on the possible speed-up
that can be achieved.

1 http://www.it.usyd.edu.au/~jeff/nonpareil/

2 The term function in Icon literature is sometimes used as synonymous for the built in procedure. This text
cannot be consistent with that tradition, since mathematical notion of the function is needed. It is assumed that
procedure or operator is a function if its result depends only on submitted arguments and it does not produce
side effects.

4

THE GENERATOR

VOL 2. NO 1.
FEBRUARY MMVI.

Memoized functions are initially, when most of the function calls (in this context: function and
submitted arguments) were not computed already, slower than non-memoized versions: time is spent on
unsuccessful search, computation of the results like in the non-memoized version and storing of the
results in some data structure for further use. However, as the probability that the result of the
procedure call for some argument is already computed increases, the memoized version becomes faster.
The following graph roughly depicts the relation between speed of the memoized function and running
time of the program for a very simple memoization task, when both time required for computation of the
function without memoization and time required for access to previously stored results are constant and
arguments of the function are randomly chosen.

time

Number of
computation per time
unit.
Memoized
computations.

Many successful practical applications of memoization have been reported. For example, D. Michie
wrote that his colleague from Edinburgh, Robin Popplestone1 increased the speed of his programs by a
factor of 10-20. Our program Finder2 is 2-3 times faster if some of the performed computations are
memoized. Marty Hall3 and J. Paul McNamee4 reported5 speed up of a few Lisp programs between 15
and 600 times. Perhaps the most impressive speed up is reported by Belgian physicist Peter Van
Eynde6 in his ASK UNCLE PETER7 column: he reduced the running time of the quantum mechanics Lisp
program from a few millions of years to five minutes.

1 http://www-robotics.cs.umass.edu/~pop/

2 http: //chem.pmf.hr/~kazimir/Finder.html

3 http: //apl.jhu.edu/~hall/

4 http: //apl.jhu.edu/~paulmac/

5 Marty Hall, J. and Paul McNamee Improving Software Performance with Automatic Memoization,
JOHNS HOPKINS APPLIED PHYSICS LABORATORY TECHNICAL DIGEST, Volume 18, Number 2 (1997),

6 http://people.debian.org/~pvaneynd/

7 http://www.cliki.net/Ask Uncle Peter
5

THE GENERATOR

VOL 2. NO 1.
FEBRUARY MMVI.

Ad hoc implementation and use of memoization is surprisingly simple, especially in sufficiently high
level programming languages like Unicon or Icon, with good support for the hash tables. Arguments of
the memoized function calls can be used as keys, and results as values.

procedure im_fib (n)
 static T
 initial { T:=table(); T[1]:=(T[2]:=1) }
 return \T[n] | (T[n]:= im_fib (n-1)+ im_fib (n-2))
end

Achieved speed-up is significant, even impressive. The reader can compare running times of the
r_fib(35) and im_fib(35). For simplicity, let us suppose that the time required for access to T[i] does
not increase significantly when the size of T increases. As already noted, the running time of im_fib (n)
is linearly related with n, just like nr_fib(n) is. However, after the first execution of im_fib (n), results of
im_fib (1), ..., im_fib (n) are memoized and in further calls, running time of im_fib(m) is constant for
m n and it linearly depends on m-n, if m > n. Hence, it can be expected that im_fib has in practice
significantly better running time than nr_fib(n) and especially r_fib(n).

Adding memoization to a procedure seems to be largely routine work. Hence, it can be isolated and
centralized in the program. One table might be enough to store information on all function calls in the
programs as keys and results of the respective calls as values. The keys of the table should be uniquely
determined by function call: for example, concatenation of the name of the function and values of the
arguments can be used. If arguments are not simple values, i.e. strings or numbers, they can be encoded
into strings; using, for example, Robert J. Alexander's procedures ximage or xencode or Ralph
Griswold's procedure encode from Icon Program Library. Such encoding is slow, so it can be optional.

Procedures and methods in Unicon and Icon are more general than functions in a majority of other
programming languages: some of them, for some combinations of arguments, generate many, even
potentially infinite number of results. For a particular function call, generated results can be stored in
the list that grows as needed. Furthermore, a function can fail to generate a result. Unfortunately,
failure itself is not a first class value, hence some encoding is necessary to memoize that information.
For example, [1,x] and [0,&null] can code the information that function call returned x or failed,
respectively. For more efficient use of memory, records can be used instead of list.

There is another problem with memoization which can be, perhaps, best described by example. Let us
suppose that the first time a function is called with a given combination of arguments, it generates 100
results and all of them are memoized. These results can be used whenever 100 or less results are
requested from the same function called with the same arguments. However, if some expression requests
a 101st result, the memoized function needs to be called again to generate the first 100 results and only
after that the 101st result can be generated, memoized for a further use and returned to the caller. This
behavior spends all time that is potentially spared by memoization of the first 100 results, plus it costs
some time on its own. Fortunately, it can be solved using coexpressions. For each function call a special
coexpression is created, used to generate the results, and stored in the table together with all results it
generated. If additional results are required, the coexpression is re-activated to produce new results. If
the coexpression fails, the list of the results is complete and coexpression can be safely deleted.

All collected data on function calls can be saved on a hard disk and loaded again in subsequent
program executions, allowing initially slow programs to run faster in each subsequent execution. Again,

6

THE GENERATOR

VOL 2. NO 1.
FEBRUARY MMVI.

R. Griswold's procedures encode and decode or R. Alexander's xencode and xdecode from IPL can be
used for encoding of the memo table members into strings. The interested reader can find extensive
discussion on xencode and xdecode procedures in The Icon Analyst column From the Library1. Saving
and loading of such data is relatively slow, but it typically needs to be done only on the beginning and
possibly end of the program execution. Table that contains memoized data can be easily deleted.
However, special procedure for that purpose can still provide some convenience.

Unfortunately, coexpressions cannot be saved into files, which results in performance penalties. If
memoized data are loaded from file, and more results are required from memoized function than there
are memoized results, coexpression need to be reconstructed and re-activated until it produces first
result not memoized before.

link codeobj
global memo_table, memo_encode
record memo_type(succeeded, result)
record memo3_type(L, c, is_coexpression_updated)
procedure memo3(p, rest[])
 /memo_table:=table()
 /memo_encode:=encode

 procedure_name := if type(p)=="string" then p
 else { s1:=image(p); s1[find(" ",s1)+1:0] }

 code_of_procedure_call:=procedure_name
 every code_of_procedure_call||:=(";" || memo_encode(!rest))

 if /(result:=memo_table[code_of_procedure_call]) then {
 c:=create(procedure_name ! rest)
 result:=memo3_type([], c, 1)
 memo_table[code_of_procedure_call]:=result
 }

 #Following part suspends results stored in previous executions.

 every x:=!(result.L) do {
 if x.succeeded=0 then {
 # Memo3 fails from table.
 fail
 }
 else { #write("Memo3 suspends ",x.result, " from table.");
 suspend x.result
 }
 }

 #Following part updates coexpressions if it lags behind list
 #of the results. It can be very time consuming - but it is typically performed

1 Icon Analyst 34, February 1996, pp. 9-12, http://www.cs.arizona.edu/icon/analyst/backiss/IA34.pdf
7

THE GENERATOR

VOL 2. NO 1.
FEBRUARY MMVI.

 # only once in the program, if memo table is loaded from file, but additional
 # results are required.

 if result.is_coexpression_updated=0 then {
 #write("It is found that there is not enough elements in memo-table. ")
 #write("Coexpression need to be updated, i.e. activated ",*result.L," times.")

 (result.c):=create(procedure_name ! rest)
 every !result.L do {
 @(result.c)
 #write("Coexpression activated.")
 }
 result.is_coexpression_updated:=1
 }

 #activate coexpression, store results for future use and susped them
 while y:=@(result.c) do {
 put(result.L, memo_type(1,y))
 #write("Memo3 computes, stores into memo-table and suspends ",y,".")
 suspend y
 }

 # Coexpression failed. Information on failure is memoized.
 # Coexpression can be deleted.

 put(result.L, memo_type(0,))
 result.c:=&null
 #write("Memo3 cannot suspend anything, it stores information on that and fails.")
end

procedure memo_save(s)
 /memo_table:=table()
 #write("\n====memo_save(",s,")")
 if not (f := open(s, "w")) then fail
 every x:=key(memo_table) do {
 write(f, x);
 write(f, encode(memo_table[x]))
 #write("-----------")
 #write("memo_table[\"",x,"\"]=",ximage(memo_table[x]), " saved.")
 }
 close(f)
 return 1
end

procedure memo_load(s)
 #write("\n====memo_load(",s,")")
 memo_table:=table()

8

THE GENERATOR

VOL 2. NO 1.
FEBRUARY MMVI.

 if not (f:=open(s, "r")) then fail
 while x:=read(f) do {
 y:=decode(read(f))
 if type(y)=="memo3_type" then y.is_coexpression_updated:=0
 #write("-----------")
 #write("memo_table[\"",x,"\"]=",ximage(y)," loaded.")
 memo_table[x]:=y
 }
 close(f)
 return 1
end

procedure memo_delete()
 memo_table:=&null
 return 1
end

Some lines of the code used for inspection of the procedure are only commented out, not deleted. The
reader can easily introduce them back, if such inspection is of his interest.

The procedure call f(expr1,...,exprn) can be replaced with memo3("f", expr1,...,exprn) or memo3(f,
expr1,...,exprn) if f is a function i.e. its result depends only on its arguments, and it does not produce
side effects. If the memoized procedure is recursive, as for example r_fib is, such a replacement should
be done inside the procedure code as well.

procedure m_fib(n)
 return if n<=2 then 1 else memo3(m_fib,n-1)+memo3(m_fib,n-2)
end

One can note that the procedure for support of the memoization is named memo3. Really, two other
procedures for the same purpose are made; they are less general but also less resource demanding
versions of memo3. The procedure memo does not memoize generators, while memo2 does, but it does not
use the described coexpression trick. All three memo procedures can be used in the same program, and
results can be stored in the single memo_table, as long as the same memo procedure is used consistently
for each procedure call.

procedure memo(p, rest[])
 /memo_table:=table()
 /memo_encode:=encode

 procedure_name := if type(p)=="string" then p
 else { s1:=image(p); s1[find(" ",s1)+1:0] }

 code_of_procedure_call:=procedure_name
 every code_of_procedure_call||:=(";" || memo_encode(!rest))

 if \(x:=memo_table[code_of_procedure_call]) then {
 if x.succeeded=0 then fail else return x.result
 }

9

THE GENERATOR

VOL 2. NO 1.
FEBRUARY MMVI.

 if x :=(procedure_name ! rest)
 then { memo_table[code_of_procedure_call]:=memo_type(1, x); return x }
 else { memo_table[code_of_procedure_call]:=memo_type(0,); fail }
end

procedure memo2(p, rest[])
 /memo_table:=table()
 /memo_encode:=encode

 procedure_name := if type(p)=="string" then p
 else { s1:=image(p); s1[find(" ",s1)+1:0] }

 code_of_procedure_call:=procedure_name
 every code_of_procedure_call||:=(";" || memo_encode(!rest))

 /memo_table[code_of_procedure_call]:=[]
 L:=memo_table[code_of_procedure_call]
 cardL:=*L

 every x:=!L do { if x.succeeded=0 then fail else suspend x.result }
 i :=0
 every y:=(procedure_name! rest) do
 if (i+:=1) >cardL then { put(L,memo_type(1,y)); suspend y }

 put(L,memo_type(0,))
end

The procedures above are tested to some extent. One of the tests is provided here, as an example of
different possibilities for memoization.

procedure m_fib(n)
 return if n<=2 then 1 else memo(m_fib,n-1)+memo(m_fib,n-2)
end

procedure m2_fib(n)
 return if n<=2 then 1 else memo2(m2_fib,n-1)+memo2(m2_fib,n-2)
end

procedure m3_fib(n)
 return if n<=2 then 1 else memo3(m3_fib,n-1)+memo3(m3_fib,n-2)
end

procedure g_fib() # suspend first n Fibonacci numbers, non-recursive
 suspend (a:=1)|(b:=1)
 repeat {(a+:=b):=:b; suspend b }

10

THE GENERATOR

VOL 2. NO 1.
FEBRUARY MMVI.

end

procedure demo1()
 write("\n-------------- Test of the correctness: fib(20) should be 6765. --------------\n")

 j := 20
 write("Recursive, not memoized implementation: ",r_fib(j))
 write("Non-recursive, not memoized implementation: ",nr_fib(j))
 write("Recursive implementation with integrated memoization: ",im_fib(j))
 write("Generator without memoization: ",(every x:=g_fib()\j) | x)

 every memo_encode:=![1, encode] & tested_case:=!["",2,3] do {
 write(repl("•",40))

 comment:="Memo"||tested_case||"-ized"
 tested_procedure:=proc("m"||tested_case||"_fib")
 file_name:="memofile"||tested_case||".txt"

 memo_delete() & collect()
 write(comment, " recursive implementation (encode: ", image(memo_encode),
 "): ",tested_procedure(j))
 memo_save(file_name)

 memo_delete() & collect()
 memo_load(file_name)
 write(comment, " populated recursive implementation (encode: ", image(memo_encode),
 "): ",tested_procedure(j))
 memo_save(file_name)

 tested_procedure:=proc("memo"||tested_case)

 memo_delete() & collect()
 write(comment," generator (encode: ", image(memo_encode),"): ",
 (every x:=tested_procedure(g_fib)\j) | x)
 memo_save(file_name)
 #
 memo_delete() & collect()
 memo_load(file_name)
 write(comment," populated generator (encode: ", image(memo_encode),"): ",
 (every x:=tested_procedure(g_fib)\j) | x)
 }
end

procedure demo2()

 write("\n-------------- Test of the speed/ms. --------------\n")

11

THE GENERATOR

VOL 2. NO 1.
FEBRUARY MMVI.

 m:=1000

 write("Recursive, not memoized implementation is too slow to be compared with others.")
 t:=&time; every k:=1 to m do nr_fib(?k);
 write("Non-recursive, not memoized implementation: ",&time-t)
 t:=&time; every k:=1 to m do im_fib(?k);
 write("Recursive implementation with integrated memoization: ",&time-t)
 t:=&time; every k:=1 to m do (every x:=g_fib()\?k)|x;
 write("Generator: ", &time-t)

 every memo_encode:=! [1, encode] & tested_case:=!["",2,3] do {
 write(repl("•",40))
 comment:="Memo"||tested_case||"-ized"
 tested_procedure:=proc("m"||tested_case||"_fib")
 file_name:="memofile"||tested_case||".txt"

 memo_delete() & collect()
 t := &time
 every k:=1 to m do tested_procedure(?k);
 write(comment, " recursive implementation (encode: ", image(memo_encode),"): ", &time-t)
 tested_procedure(m)
 memo_save(file_name)

 memo_delete() & collect()
 memo_load(file_name)
 t := &time
 every k:=1 to m do tested_procedure(?k)
 write(comment, " populated recursive implementation (encode: ", image(memo_encode),
 "): ", &time-t)

 tested_procedure:=proc("memo"||tested_case)

 memo_delete() & collect()
 t := &time
 every k:=1 to m do every tested_procedure(g_fib)\?k;
 write(comment, " generator (encode: ", image(memo_encode),"): ", &time-t)
 memo_save(file_name)

 memo_delete() & collect()
 memo_load(file_name)
 t := &time
 every k:=1 to m do every tested_procedure(g_fib)\?k;
 write(comment, " populated generator (encode: ", image(memo_encode),"): ", &time-t)
 memo_save(file_name)
 }
end

12

THE GENERATOR

VOL 2. NO 1.
FEBRUARY MMVI.

procedure main()
 demo1()
 demo2()
end

The test is performed on PC computer with PIII processor working at the rate of 2 GHz, under
Unicon 10 and Microsoft Windows. All tests, except attempt of application of procedure memo for
memoization of generators gave correct results. Running times vary; however, all memoized versions are
faster than recursive-non memoized version r_fib, and some of the memoized versions were significantly
faster than non-recursive non-memoized function nr_fib.

It should be noted that the presented test is by no means representative. Even a slight change of the
tested code can cause significantly different and hardly predictable results. For example, the reader can
try to replace every occurrence of "?k" in demo2 with simple "k" and execute the program again.

-------------- Test of the correctness: fib(20) should be 6765. --------------

Recursive, not memoized implementation: 6765
Non-recursive, not memoized implementation: 6765
Recursive implementation with integrated memoization: 6765
Generator without memoization: 6765
••
Memo-ized recursive implementation (encode: 1): 6765
Memo-ized populated recursive implementation (encode: 1): 6765
Memo-ized generator (encode: 1): 1
Memo-ized populated generator (encode: 1): 1
••
Memo2-ized recursive implementation (encode: 1): 6765
Memo2-ized populated recursive implementation (encode: 1): 6765
Memo2-ized generator (encode: 1): 6765
Memo2-ized populated generator (encode: 1): 6765
••
Memo3-ized recursive implementation (encode: 1): 6765
Memo3-ized populated recursive implementation (encode: 1): 6765
Memo3-ized generator (encode: 1): 6765
Memo3-ized populated generator (encode: 1): 6765
••
Memo-ized recursive implementation (encode: procedure encode): 6765
Memo-ized populated recursive implementation (encode: procedure encode): 6765
Memo-ized generator (encode: procedure encode): 1
Memo-ized populated generator (encode: procedure encode): 1
••
Memo2-ized recursive implementation (encode: procedure encode): 6765
Memo2-ized populated recursive implementation (encode: procedure encode): 6765
Memo2-ized generator (encode: procedure encode): 6765
Memo2-ized populated generator (encode: procedure encode): 6765

13

THE GENERATOR

VOL 2. NO 1.
FEBRUARY MMVI.

••
Memo3-ized recursive implementation (encode: procedure encode): 6765
Memo3-ized populated recursive implementation (encode: procedure encode): 6765
Memo3-ized generator (encode: procedure encode): 6765
Memo3-ized populated generator (encode: procedure encode): 6765

-------------- Test of the speed/ms. --------------

Recursive, not memoized implementation is too slow to be compared with others.
Non-recursive, not memoized implementation: 341
Recursive implementation with integrated memoization: 0
Generator: 431
••
Memo-ized recursive implementation (encode: 1): 60
Memo-ized populated recursive implementation (encode: 1): 20
Memo-ized generator (encode: 1): 10
Memo-ized populated generator (encode: 1): 10
••
Memo2-ized recursive implementation (encode: 1): 80
Memo2-ized populated recursive implementation (encode: 1): 30
Memo2-ized generator (encode: 1): 401
Memo2-ized populated generator (encode: 1): 340
••
Memo3-ized recursive implementation (encode: 1): 802
Memo3-ized populated recursive implementation (encode: 1): 30
Memo3-ized generator (encode: 1): 361
Memo3-ized populated generator (encode: 1): 351
••
Memo-ized recursive implementation (encode: procedure encode): 150
Memo-ized populated recursive implementation (encode: procedure encode): 61
Memo-ized generator (encode: procedure encode): 10
Memo-ized populated generator (encode: procedure encode): 10
••
Memo2-ized recursive implementation (encode: procedure encode): 250
Memo2-ized populated recursive implementation (encode: procedure encode): 100
Memo2-ized generator (encode: procedure encode): 421
Memo2-ized populated generator (encode: procedure encode): 340
••
Memo3-ized recursive implementation (encode: procedure encode): 942
Memo3-ized populated recursive implementation (encode: procedure encode): 120
Memo3-ized generator (encode: procedure encode): 361
Memo3-ized populated generator (encode: procedure encode): 350

The procedures for support of memoization presented here have obvious limitations. As already
noted, because coexpressions cannot be saved, we did not succeed to eliminate redundancy completely, if
generators are memoized across the program execution sessions. Furthermore, due to multi-
paradigmatic, "postmodern" nature of the Icon and even more, Unicon, there are many special cases that

14

THE GENERATOR

VOL 2. NO 1.
FEBRUARY MMVI.

require additional attention to be successfully memoized. For example, important string scanning
procedures depend on values of &subject and &pos. In object oriented programming, results of the
procedure members typically depend not only on the supplied arguments, but also on the values of data
members. There are other special cases, as well.

Theoretically1, performances of the tables can be improved if expressions like member(T, x) and
insert(T, x, y) are used instead of \T[x] and T[x]:=y respectively. Our experience, although far from
extensive, however, does not suggest that improvement is significant in this context.

Also, improvements of the memoization technique unrelated to the programming language used are
possible. As already noted, some function can not be effectively memoized because there are too many
possible combinations of the arguments, especially functions accepting real numbers as arguments. D.
Mitchie proposed that in such cases, result of the procedure call might be approximated using memoized
data on similar procedure calls; it can be achieved through redefinition of the relation "equal to". Similar
ideas seem to be recently researched by Ron Perry2 from Cambridge, USA, under the name of
continuous memoization. For more ambitious memoization projects, essentially limited space might allow
only selective memoization, similar to the human approach. A good starting point for further reading
appears to be a web site of Umat A. Acar3 from Pittsburg.

1 Programming tips, The Icon Analyst, Vol 1 No 1, August 1991, p. 6,

2 http://www.merl.com/projects/memoization/

3 http://www-2.cs.cmu.edu/~umut/
15

